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Abstract. The last century was marked by a prodigious 
development of modeling phenomena of capital 
markets. During the basic process, a number of assumptions 
that were made proved to have more or less validity in tests 
confronting or conforming to reality. In this paper we 
propose to question some of those assumptions in the case of 
the capital market of Romania. 
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1. INTRODUCTION 

Understanding the phenomena that take place within the 
capital markets or those connected to it, requires the use of 
quantitative methods and techniques. 

In particular, the statistical methodology provides efficient 
tools for the analysis of  the processes taking place in close 
connection with capital markets activity. 

After centuries of studies in which statistics was used to 
investigate a wide variety of phenomena in economic or 
social areas, medical sciences etc., a useful conclusion can be 
drawn for the understanding of these classes of events: unlike 
sciences terminology, such as logic, statistics does not operate 
with concepts of true or false. A statistical conclusion will 
almost never be true or false, but only probable or less 
probable, the accuracy test of this conclusion being 
comparison with reality. 

This requires a special relationship with reality: to 
understand a phenomen of this nature, usually we seek to 
obtain a law, i.e. a general rule of governing the intrinsic life 
of that phenomenon; and we discover this by building models 
of reality, being more or less abstract ones, trying to surprise 
the essence of the event.  

In general, a model is a simplified representation of reality, 
taken in order to understand its essential aspects. 

In economics, a model is a theoretical construct explaining 
the economic process through a set of variables and some 
qualitative and quantitative relationships between them. 

The model simplifies, being a key to understanding reality, 
not at a true reflection of it. 

The way in which we use models to represent and have a 
deep knowledge of reality allows us to form an analogy with 
Plato’s theory of ideas. 

According to this theory, there is a perfect world, the world 
of ideas, of forms, which is the true reality, the sensory world 
being a pale reflection of the world ideas. Thus, having an 
idea of a perfectly round circle cannot be false as is relating to 
and describing an aspect of perfection. However, this idea 
does not prove the existence of anything, but merely 

demonstrates that it is possible for an imperfect being to hold 
a concept of perfection. If it is possible to hold an idea of a 
perfect circle, but still be imperfect, surely it is possible to 
hold a concept of a perfect being whilst being imperfect. 

This happens generally with geometric models, which 
operates with perfect concepts and notions that are not to be 
found in inherent reality. 

In general, a model is in intrinsic connection with the 
reality that it describes; starting from the actual data of 
reality, we are building models, schemes of understanding of 
reality. These models can be studied independently, at the 
abstract level (which it makes it particularly applicable to  
modern mathematics), have a life of their own, in the ideal 
world of models, but ultimately there is a return to real world 
models with valid conclusions from the reality’s level that 
gave rise to the model. 

 
 

Fig. 1. Scheme of understanding reality through a model 

 

We distinguish between two classes of models: 
deterministic models and probabilistic models. 

Deterministic models are models in which parameters and 
variables are not subject to some random fluctuations. An 
example is the model associated with Newtonian 
mechanics. According to the second principle of mechanics, 
the force is proportional to the body’s mass in motion and it’s 
accceleration: amF

rr
= . Then whenever we know the values of 

mass and acceleration of a body in motion, we know with 
certainty the amount of force developed by it. In this case the 
only errors that can interfere are errors of measurement.  

Probabilistic models are models that take into account the 
random component. In our attempt to include in a 
mathematical model the surrounding reality, a special 
requirement is the prediction of the future states of reality 
with the help of the build model. Since the use of 
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deterministic models to capture essential aspects of reality 
seems to be an approach inevitably doomed to failure1, a 
reasonable solution would be to use stochastic models, in 
which the random factor is given a proper role. 

Modeling capital markets has a long history, which can not 
be separated from the historical development of modern 
methods and techniques of quantitative investigation. 

As it will be seen from this work, modeling capital market 
is in a close relationship with the hypothesis of capital market 
efficiency, a concept also correlated with the rationality of the 
participants’s behavior in the market’s activities. 

In the following analysis we make an overview of the main 
authors who have approached this piece of reality in their 
work, but also the most important results that have marked in 
a definitive way the understanding of phenomena that occur 
in the capital markets. 

In the year 1565, the famous Renaissance mathematician 
Girolamo Cardano published the book Liber de ludo aleae 
(The book of gambling), in which he proposes the concept of 
equality of chances, which can be found in modern literature 
of game theory under the name of the correct game (fair 
game ): „the fundamental principle in all gambling is the 
equality of chances, whether it is about opponents, money, 
etc.”. 

In the year 1828, the Scottish botanist Robert Brown 
observed in an experiment that pollen particles in suspension 
have a random oscillatory movement, which rapidly change 
the trajectory. This observation leads to the concept of the 
Brownian motion. 

In 1863 a French broker, Jules Regnault noted a 
fundamental property of Brownian motion: the variability 
(measured by standard deviation) of Brownian motion is 
proportional to the square root of time. 

It is already the moment when it begins to crystallize the 
main notions and concepts that will mark the effort of 
modeling financial phenomena. 

Thus, British physicist Rayleigh discovered in 1880 the 
processes of random walk (walking at random) during his 
studies on sound waves. 

In the year 1888, logician and philosopher John Venn 
formulated a coherent concept of random walk and Brownian 
motion. 

The crucial point in modeling financial market phenomena 
came in the year 1900, when the young French mathematician 
Louis Bachelier published his doctoral thesis Théorie de la 
speculation2. Using statistical methods, he deduced that the 
mathematical expectation of the speculator is zero; also, it 
formalized the Brownian motion, being calculated the 

                                                           
1  See in this respect also the aroused controversy in the XVIIth and 
XIX th centuries on the deterministic models of the Universe built by 
Laplace which is assigned the following phrase:” No place for God 
in the world build by me” (i.e., no error would have belong in such a 
purely, deterministic Universe!). 
2Bachelier, L.,1900, “Théorie de la speculation”, AnnalesScientifique 
de l’E.N.S.,3eserie, tome 17,pp.21-86,http://www.numadam.org/item 
?id=ASENS_1900_3_17_21_0  

probability that a certain return to be achieved in a given 
period of time. 

In 1905, the statistician Karl Pearson introduced the term 
of random walk in his article in the journal Nature3 where he 
define the random walk proccess: „in an open space, the most 
likely place where to find a drunken man, who can not stand 
up, is somewhere in the neighborhood of its initial position”. 

That same year, independent of previous research by 
Bachelier, Einstein developed the equations that are 
describing Brownian motion. 

Much later, in the 70’s, appears the article that will 
definitely mark the theory of financial markets: Efficient 
Capital Markets: A Review of Theory and Empirical Work, 
written by Fama. This paper provides a summary of previous 
research on the issue of predictability in equity markets and it 
provides clearly formalism for notions like fair game and 
random walk. 

Also, it is given the classic definition of efficient markets: 
a market is efficient if stock prices  always fully reflects all 
available information4.  

There is made the distinction between three forms of 
efficiency: strong, semi-strong and weak form efficiency. To 
discuss capital market efficiency hypothesis to be considered 
common (joint hypothesis): in addition to studying how a 
stock price fully reflects available information should be 
considered an investor’s attitude towards risk. As will be 
shown later Campbell, Lo and MacKinlay (1997) 5 „any test 
of efficiency is based on the assumption that there is an 
equilibrium model that defines the normal gains. If efficiency 
is rejected, this may mean that the market is truly inefficient 
or may be a sign that an inappropriate model of market 
equilibrium was chosen”. 

It is interesting to note that these papers, as many others, 
are based on several assumptions that are more or more or 
less explicitly formulated: hypothesis of rational behavior of 
investors, independence of economic agents, hypothesis of 
existing a normal distribution of returns, assuming the 
existence of market equilibrium.It may be questioned whether 
these assumptions are originating from economic reality or all 
of the past decade of research has modified the reality 
according to the theory. In the following we discuss in a 
critical way some of these assumptions. 

2. NORMAL DISTRIBUTION ASSUMPTION 
In 1915, Wesley Mitchell argued6 that the distribution of 

financial asset price changes is „too stretched” to come from a 
normal distribution. 

                                                           
3 Pearson, K. ,  1905, “The Problem of Random Walk”, Nature, 
No.1865, Vol. 72, August. 
4A market in which prices always “fully reflect” available 
information is called “efficient”. 
5 Campbell, J.Y., LO, W., MacKinlay, C., 1997, The Econometrics 
of Financial Markets, Princeton University, pp. 24. 
6 Mitchell, W. C., 1915 and 1921, "The Making and Using of Index 
Numbers," Introduction to Index Numbers and Wholesale Prices in 
the United States and Foreign Countries, published in 1915 as 
Bulletin No. 173 of the U.S. Bureau of Labor Statistics, reprinted in 
1921 as Bulletin No. 284. 
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In 1923 Keynes7 emits the hypothesize that investors in 
financial markets obtain profits not due their ability to predict 
better than the overall market’s future price developments, 
but because of an appetite for risk, an idea that is consistent 
with the efficient market hypothesis. 

In 1926 the French mathematician Maurice Olivier8 
provided a clear demonstration that the return distribution on 
the capital market is a leptokurtic distribution, which deviates 
from the normal distribution curve, being more elongated 
than that. 

In an article from 19609, Larson shows that the return 
distribution is very closed to the normal for the 80% of 
observations in the middle of the original distribution, but 
there are a large number of extreme values that creates a 
departure from normality. 

One of the researchers who decisively influenced financial 
modeling, Benoit Mandelbrot, rediscovers in an article in 
1962 (but published a year later10) the ideas of Louis 
Bachelier and proposes the so-called stable distributions, of 
Pareto-Levy type, for price behavior of a financial asset, 
which explains better than normal distribution the occurrence 
of extreme values. 

A confirmation that stock’s return (calculated as the 
difference of logarithms of prices) follows a stable Pareto 
distribution is obtained by Fama in 196311: thus, the logarithm 
of the characteristic function of a stable Pareto distribution 
has the form: 

ln ( ) ln exp( ) ( ) 1 tan
2

t
t uit dP u u i t t i

t

α
απϕ δ γ β

+∞

−∞

  = < = − +  
  

∫ %
 . 

Mandelbrot demonstrated that the parameter α  is 
controlling the length of „tails” of such a distribution and 
takes values in the range[ ]0,2 . In particular, if 2α = , the 

stable Pareto distribution becomes a normal distribution. 

Using daily differences of logarithms share prices of 30 
companies from the Dow Jones Industrial Average, Fama 
estimates the  α  parameter and obtains in all the cases values 
smaller than 2, an important argument in the favour of the fact 
that the return is not following a normal distribution, but a 
stable Pareto one. 

Fama’s calculation on the distribution of returns indicates 
that they are following a stable Pareto distribution, with 

                                                           
7 Keynes, J. M., 1923, "Some Aspects of Commodities Markets", 
Manchester Guardian Commercial, March 29, reprinted in The 
Collected Writings of John Maynard Keynes, Volume XII, London: 
Macmillan, 1983.  
8 Olivier, M., 1926, "Les Nombres indices de la variation des prix", 
Paris doctoral dissertation. 
9 Larson, A. B., 1960,  “Measurement of a Random Process in 
Futures Prices”, Food Research Institute Studies, Vol. 1, No. 3, pp. 
313-24. 
10 Mandelbrot, B., 1963, “The Variation of Certain Speculative 
Prices”, The Journal of Business, Volume 36, Issue 4, October, pp. 
394-419. 
11 Fama, E. F., 1963, “Mandelbrot and the Stable Paretian 
Hypothesis”, The Journal of Business, Volume 36, Issue 4, October, 
pp. 420-429. 
 

coefficient 2<α , a strong argument against the hypothesis of 
normal distribution. 

An important consequence arising from this conclusion: 
since the Pareto distribution with 2<α  has the second-order 
infinite, therefore infinite dispersion, using classical methods 
of estimation, such as ordinary least squares method, becomes 
unnecessary. Fama suggests using mean absolute deviation12 
instead of variance as a measure of variation. 

More recents works (Rachev, etc.) rediscover the theory of 
stable distributions in financial modeling theory and shows 
that there are much better approaches than classical 
distributions. The fact that the observed distribution of the 
returns is heavy-tailed can not be explained through a normal 
distribution. Further, the frequency of extreme events such as 
the financial crisis is much bigger than it actually allowing for 
Gaussian distribution. 

 

3. EFFICIENT MARKET HYPOTHESIS 

Efficient market idea, as it is understood in modern 
literature, has its origins from Bachelier Cowles and 
Samuelson’s works. In 1970, in his famous study13, Fama 
gives the following definition:”A market in which prices 
always fully reflect the available information is called an 
efficient market”. 

A more recent definition is made by Malkiel (1992): „A 
capital market is called efficient if it correctly and fully 
reflects all relevant information in determining asset prices. 
Formally, the market is assumed to be efficient relative to a 
particular set of information, if asset prices would not be 
affected by revealing that information to all agents on the 
capital market. Furthermore, efficiency relative to a lot of 
information implies that it is impossible to get profits act 
upon that information crowds”.     

The first part of this latter definition is similar to Fama’s 
classic definition, the second one involves a way to test the 
efficiency of capital markets: if prices do not change when a 
certain set of information is disclosed, then the market is 
efficient compared with that set of information (this test is 
impossible to achieve in real terms). 

The third part of the definition suggests another way to 
measure efficiency: by measuring the profits from 
transactions based on a set of information, we can decide 
whether the efficient market hypothesis is confirmed or not. 
And this way is difficult to implement since the information 
available to the the agents in capital market as incomplete 
known. 

One way to avoid these difficulties in testing the efficiency 
of capital market is to develop a classification according to 
the multitude of information available, so we can distinguish 
between three types of efficiency: 

                                                           
12 Mean absolute deviation (MAD) for a set of values nxx ,...,1  is 

defined as:   ∑
=

−
=

n

i

i

n

xx
MAD

1

                     

13 Fama E. F., 1970. “Efficient Capital Markets: A Review of Theory 

and Empirical Work”, Journal of Finance, 25(2), pp. 383–417. 
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• weak form efficiency—the set of information 
includes only the transaction history (information on 
prices or financial return on assets); 

• semi-strong form efficiency—the set of information 
includes, besides the transaction history, all public 
information known by all participants in the 
transaction; 

• strong form efficiency—sets of information 
including all information known to any of the capital 
market actors (including private information). 

One way to test the efficiency of capital market is to study 
the behavior of stock returns: if these are unpredictable it is 
an indication that the market is efficient. 

A reverse argument is offered by so-called law of iterated 
averages. Allowing in this sense two sets of information 

tI and tJ , so that  tt JI ⊂ , namely the second set is 

superior in information to the first one. 

The law of iterated averages says this: if X is a random 
variable, then ].|]|[[]|[ ttt IJXIX EEE =  

Interpretation of this law is the following: prediction based 
on the information contained in the set tI  is identical to the 

prediction that we get it if we have the additional information 

contained in the settJ . 

Applying this law in equity markets leads to an interesting 
conclusion: if a market is efficient, fluctuations in financial 
asset prices are not predictable. 

Indeed, suppose that at some point we have the set of 
information

tI , information that is completely and correctly 

reflected in the price 
tP (formalizing, this means that there is a 

random variable V, so that ]|[ tt IVP E= ). 

Similarly, the price of the next moment t +1, is determined 
by a set of information

tt II ⊃+1
: ]|[ 11 ++ = tt IVP E . 

Then the expected value of price change between the two 
moments of time is: 

0]|[}|]|[{[

}|]]|[]|[{[]|[

1

11

=−=
−=−

+

++

ttt

tttttt

IVIIV

IIVIVIPP

EEE

EEEE
. 

In conclusion, price change cannot be predicted, based on 

the information contained in the set tI . 

From a theoretically view point, if the issue of the capital 
market efficiency is well devised, we question in what way it 
can be extented to achieve a practically efficient market 
hypothesis testing. A useful approach to achieve this is the 
concept of relative efficiency, i.e. testing the efficiency of a 
market in relation to another market. 

The possibility to model the behaviour of financial assets 
in order to achive predictions of their future returns is a 
concern of researchers in this field. In the following we 
consider the problem of predictability of financial asset price 
fluctuations, considering that they are influenced by past 
values. 

3.1.RW1 hypothesis: independent and identically 
distributed increments (i.i.d) 

The most natural expression of random walk hypothesis is 
that the price of financial assets is a stohastic process with 
internal dependence, with the following form: 

1t t tP Pµ ε−= + + ,                                        (3.1) 

where 2( ) (0, )t tε σWN�  is a white noise, i.e. a series of 

random variables independent, identically distributed: 

keveryfortsindependen

tVar

tE

ktt

t

t

+

∀=
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εε
σε

ε

,

,][

,0][
2 . 

Moreover, if the last condition is satisfied, then we have. 

[ ] 2 2, 0 şi , 0, 0t t k t t k kε ε ε ε+ + = = ∀ ≠ Cov Cov  . 

In equation (3.1), 1,t tP P− are the price value at two 

consecutive moments, and µ is the expected price change, 

so-called drift. 

Independence of innovations ( )t tε implies that random 

walk is also a fair game, but in a sense stronger than the 
Martingale hypothesis: increments are not only non-
correlated, but also independent, hence results that any linear 
combinations thereof are non-correlated. 

The functional form of the RW1 model induces non-
stationarity conditions of the process 

( )t tP : 0 0

2
0

[ | ]

[ | ]

t

t

P P P t

P P t

µ
σ

= +


=

E

Var
. 

The most encountered condition that is imposed to 

innovations( )t tε  is the one of the normality, beside the white 

noise’s character, a condition which induces a certain 
convenience in formal terms. But it appears inconsistent with 
the actual situation, because the normal distribution covers 
the entire real line, so there is a nonzero probability that an 
asset price is negative. One way to avoid this difficulty is to 
use instead of financial asset price series, time series of 
natural logarithms of these prices: logt tp P= . 

RW1 model becomes then a lognormal: 

1t t tp pµ ε−= + + , 

where 2( ) (0, )t tε σWN� (i.e. white noise) and 2(0, )tε σN� . 

3.2. RW2 Hypothesis: independent increments 

Although simplicity and elegance RW1 model is appealing, 
assuming the existence of independent identically distributed 
growth is just natural. 

Factors that determine the evolution of financial asset 
prices in a market are not the same and do not have the same 
intensity for different periods of time. Also, economic 
conditions differ greatly over time, making the identical 
distributions assumption over the entire time horizon to be 
unnatural. 
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When the RW2 model is derived from RW1 model, 
renouncing to the hypothesis of the existence of a joint 

distribution of innovations( )t tε :
1t t tP Pµ ε−= + + , where is a 

sequence of independent random variables such that 

[ ]
[ ]

2

2 2

[ ] 0,

,

, 0, 0

, 0, 0

t

t t

t t k

t t k

t

t

k

k

ε
ε σ
ε ε

ε ε
+

+

= ∀
 = ∀
 = ∀ ≠
   = ∀ ≠ 

E

Var

Cov

Cov

. 

Although the RW2 model is weaker than RW1, retains its 
essence: any future change in the price of financial assets is 
unpredictibil using past price changes. 

 

3.3.RW3 hypothesis: non-correlated increments 

Relaxing the assumptions of previous models, we obtain a 
more general form of the random walk hypothesis, the 
innovations are dependent but non-correlated. 

1t t tP Pµ ε−= + +  

where ( )t tε is a sequence of random variables such that 
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t t
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An immediate consequence of the efficient market 
hypothesis in weak form is that price changes (i.e., yields) are 
not predictable. 

One of the most commonly used statistical test to verify the 
hypothesis of random walks is variance ratio test. An 
important property of all random walk hypothesis is that the 
variable residual variance to be a linear function of time. 

Considering the RW1 model t tr µ ε= + , since yields tr  

are independent and follows the same distribution, we have 
that 1[ ] 2 [ ]t t tr r r−+ =Var Var . Therefore, we can determine 

whether the random walk hypothesis is plausible verifying 

report variances: 1[ ]
(2)

2 [ ]
t t

t

r r
VR

r
−+= Var

Var
. If RW1 hypothesis 

is true, then this report should be substantially equal to one. 

Variances ratio can be written according to first-order 
autocorrelation coefficient, if it is assuming that the return 
series is stationary (this is necessary to define the 
autocorrelation function): 

1 1[ ] 2 [ ] 2 [ , ]
(2) 1 2 (1)

2 [ ] 2 [ ]
t t t t t

t t

r r r r r
VR

r r
ρ− −+ += = = +Var Var Cov

Var Var
. 

If RW1 is met, then a first-order autocorrelation coefficient 
is zero, so (2) 1VR = .If the series has positive autocorrelation 

of first-order, then (2) 1VR > , and if the series has negative 

autocorrelation of first-order, then (2) 1VR < . 

For lags bigger than 1, variances ratio is a linear 
combination of coefficients’s autocorrelation: 

1
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To infer the distribution of (2)VR , we assume that 

profitability tr  follows a pattern RW1: 0 : t tH r µ ε= + , 

where ( )t tε  is a sequence of independent random variables 

indentically distributed 2(0, )tε σN� .Assuming that we 

work with a sample of 2n+1 observations over 

time 0 2,..., np p , we will consider the following estimators 

for the parameters’s distribution, µ  and 2σ : 
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Estimators µ̂  and 2ˆaσ  are exactly the estimators of 

maximum verosimility of the two parameters, and 2ˆbσ is an 

estimator constructed so that is taking into account the 

random behavior of time series ( )t tp ; variance is a linear 

function of time, so 2σ  can be estimated by half of the 
variance even-terms of the series. 

Then in contions of RW1 hypothesis , we can inferre the 
asymptotic distribution of the variances ratio 

�
2

2
(2) b
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We reject the random walk hypothesis at significance 

levelα if the value of statistics 
�2 ( (2) 1)

2

n VR
z

−=  is outside 

the interval 
/ 2 / 2[ , ]z zα α− . 

Variances ratio test can be easily extended to the case of 
several time periods. If the initial sample consists of nq+1 
observations, {

0,..., nqp p }, we have: 
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In RW1 hypothesis’s conditions, we have:  

                                                           
14 Haussman, J. 1978, "Specification Tests in Econometrics", 
Econometrica, Vol. 46. 
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�( ( ) 1) (0,2( 1))nq VR q q− → −N . 

We can refine the asymptotic distribution of the variances 
ratio, building better estimators for the parameters from 
above.A better estimator for the model’s dispersion can be 
obtained using returns for q periods:  

2 2
2

1
ˆ ˆ( ) ( )

nq

c k k q
k q

q p p q
nq

σ µ−
=

= − −∑ . 

Also, we will correct dispersions 2ˆaσ  and 2ˆbσ : 
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The new ratio of the variances will be: 
2

2

( )
( ) c

a

q
VR q

σ
σ

= . 

Then we define a new statistics by which we test the 
hypothesis of random walk: 

1/ 2
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q
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This test can be used to verify the RW1 hypothesis, 
assuming homoscedasticity and returns independence. 

A variant of this test, for the RW3 hypothesis, in which we 
presume the heteroscedasticity hypothesis, is presented 
below. 

The two versions of the ratio-variance test follows the 
methodology used by Lo and MacKinlay (1988) and 
Campbell, Lo, and MacKinlay (1997). 

To test RW3, assuming innovation’s non-correlation and 

heteroscedasticity, one can use the following statistics: 
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- Variance ratio is computed using its asymptotic expression: 
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- )(ˆ qθ  is an heteroscedasticity-consistent estimator of )(qθ , 

the asymptotic dispersion of VR(q), calculated such as: 
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- kδ̂  is a heteroscedasticity-consistent estimator of kδ , the 

asymptotic dispersion of )(kρ , tr ’s autocorrelation 

coefficient of order k:  
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Typically, to test one of the two forms of the random walk 
hypothesis, we compute the variance ratios VR(q) for m 

periods, { }1 2, ,..., mq q q , then determine appropriate 

statistics ( )qψ  or * ( )qψ and finally compare the statistics 

with a critical value of normal or Student distribution, / 2zα  

or / 2;nqtα . 

 

4. APPLICATION FOR BET INDEX 
To check the assumptions from above, we used daily data 

values of BET, the index of the Bucharest Stock 
Exchange. The time period studied is 19th September 1997 to 
15th June 2010(3164 observations).We used logreturn, defined 

as 1lnln −−= ttt PPr , where tP is the index value at time t. 

4.1 Normal distribution assumption 
To check the hypothesis of normal distribution for daily 

return of BET index, we applied the battery of tests for 
normal distribution available in SAS 9.2: Kolmogorov-
Smirnov test, Anderson-Darling test and Cramer-von Mises 
test. In all three cases, the normal distribution hypothesis was 
rejected with a probability of at least 99%. 
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Fig. 2. Histogram of logreturn for BET 
 

Table 1. Parameters of normal distribution  
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Parameter Estimate 

Mean 0.000506 

Std Dev 0.019321 

 
Table 2. Goodness-of-Fit Tests for Normal Distribution 

 
Moreover, the normal distribution cannot explain the 

presence of large deviations in stock price evolution. 
 The table below shows the probability that returns 

are lower than a certain value, computed form the estimated 
normal distribution and from the real data 

Table 3. Distribution of extrem returns 

        )Pr( crt >  

Cut point(c) Real data Normal distribution 
-0.05 0.013906 0.0044738 
-0.1 0.001264 9.863E-08 

-0.11 0.000948 5.343E-09 
-0.13 0.000316 7.161E-12 

 
A strong research direction studied in later years, although 

it has its origins in the works of Mandelbrot in the ‚60s, is the 
use of stable distributions (Pareto-Levy) for modeling 
stocks’s returns. 

As noted, the return’s distribution has tails of much higher 
return than would be expected under normal distribution, and 
stable distributions resolves the problem of such extreme 
events. Stable distributions have a remarquable property:  
they allow for skewness and heavy tails and more, any linear 
combination of stable independent variables is also stable. In 
other words, the shape of distribution is preserved under 
linear transformation. 

In general, the stable distributions do not present an 
explicit form of probability density function, being only the 
known characteristic function. Normal distribution is a special 
case of stable distribution: any linear combination of  
dependent Gaussian is also Gaussian. 

In literature there are several parametrizations of stable 
distributions. We chosed for this paper the parametrisation 
S0, in Nolan (2001)’s variant. 

Thus, a variable X follow a stable distribution )0;,,,( δγβαS  

if its characteristic function has the form: 
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In the above notation ]2.0(∈α  is the characteristic 

parmeter(for normal distribution 2=α ), ]1,1[−∈β is the 

skewness parameter, ),0( ∞∈γ is the scale parameter 

and R∈δ is the location parameter.For our daily return 
series of BET index, the following results have been obtained, 
using the software STABLE (Nolan, 2001). 

Table 4.  Parameters of the stable distribution 

Parameter Estimate Lower 95% Upper 95% 

α 1.476234 1.421034 1.531434 

β -0.01872 -0.138416 0.100984 

γ 0.009246 0.0088915 0.0096011 

δ 0.000551 -0.00005 0.0011552 
Maximum likelihood estimators of stable distribution under 
S0 parametrization shows that we can reject the normal 
distribution hypothesis, since the characteristic parameter α is 
significantlly lower than 2, the value of the gaussian 
distribution. 

 
4.2. Random walk hypothesis 
Based on the methodolgy descrided above, we have 

computed variance ratios for daily returns. Also a confidence 
interval with 95% probability was computed, using 
homoskedasticity or heteroskedascicity assumption for model 
innovations. 
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Test Statistic p Value 

Kolmogorov-Smirnov D 0.085 Pr >D <0.010 

Cramer-von Mises W-Sq 8.062 Pr>W-Sq <0.005 

Anderson-Darling A-Sq 45.963 Pr>A-Sq <0.005 
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Variance ratio
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Fig. 3. Confidence intervals for VR(q) 

 
In the above graphs, the red lines represent the limits of 

95% confidence interval, while the blue line represents the 
values of variance ratio.Based on the Variance Ratio Test, we 
can reject the random walk hypothesis for daily series of 
BET. 

5. CONCLUSIONS 

Altough the normal distribution has been widely used for a 
lot of applications in the financial world we still need 
appropriate distribution in order to take account for large 
variability and heavy tails. Stable distributions are a good 
approach for these problems even they are not easy to define 
analytically and also easy to estimate. 

Also the Efficient Market Hypothesis (and consequently 
the Random Walk Hypothesis) needs to be reconsidered, 
since they cannot explain large fluctuations in stock price and 
stock market crisis. 
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